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Short Papers

On The Use of Davidenko’s

Method in Complex Root Search

Hassan A. N. Hejase

Almtract—Davidenko’s method has proved to be a powerful technique

for solving a system of n-coupled nonlinear algebraic equations. It

employs a Newton’s method reduction to produce n-coupled first-order

differential equations in a dummy variable. The advantage it offers over

Newton’s method and other traditional methods such as Msdler’s method
is that it relaxes the restrictions that the initial guess has to be very close
to the solution. TWO examples involving the search for complex roots are

presented. Davidenko’s method seems to converge to the roots for all
the arbitrary initial guesses considered while Muller’s method appears
to fail for some cases. This suggests the use of Davidenko’s method as
an alternative to Muller’s method when the later fails to converge or is
slowly convergent.

I. SUMMARY OF COMPLEX ROOT SEARCH METHODS

In many electromagnetic problems, such as microsttip antennas

in multilayered dielectric stmctures, we often obtain complex tmn-

scendental expressions whose complex poles or singularities have

to be found and extracted in order to accelerate the convergence of

the numerical algorithm used. Rootfinding methods such as New-

ton–Raphson and Muller’s methods have been the most commonly

used by researchers. However, the success of these methods mainly

depends on the proper choice of initial guesses. In this paper we

will compare these methods to an alternative method, known as

Davideuko’s method, as applied to some typical electromagnetic

applications.

The Newton–Raphson method [1] is based on the idea of approx-

imating a complex function .f ( z ) locally by a straight line (tangent

line). Let z~ be an approximation of root z,. Then the equation of

the tangent line to ~(z) at ( Zk, ~k ) is given by

f(z) –fk = (z–zk)f~ (1)

where ~~ is the derivative of f(z) at : = zk, and the z-intercept

is (z~+l, O) where

.f!t
2’+1= ‘k- E’ (2)

In regions where f(z) has a small slope, Newton–Raphson method

can be erratic. Direct convergence to a root Z. is guaranteed only if

the initial guess z. is sufficiently close to %..

Muller’s method [2] is widely used by electromagnetic researchers

in complex root search. It is better than Newton-Raphson method

in the sense that it interpolates f(:) in the vicinity of a root by

a quadratic curve (parabola). Since it takes 3 points to uniquely

define a parabola, we assume 3 approximate vahres for the root

z,, z~—z, Zk—1, and % along with their respective function values

.f~-z. .f~-~, and f,. Therefore, given 3 initial guesses zO, ZI, z,, the
method generates a sequence z., Z1. zz. a.. . . of approximations.

At each stage, the new approximation is derived from the 3 most
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recent ones by quadratic interpolation. Although the method is rather

complicated, no evaluations of derivatives of .f ( z ) and only one

evaluation of .f (z) is required per iteration. Convergence is essentially

global for almost all practical problems with almost any set of initial

guesses Z., z,, zz.

An alternative method that is competitive to Muller’s method is

Davidenko’s method. This method has been successfully applied

in Chemical engineering problems [3]. It has also found use in

Electromagnetic, where it was used in solving the dkpersion re-

lations of electromagnetic waves propagating in lossy waveguide

structures [4]. Davidenko’s method is a Newton-based method which

is advantageous in the case of n-dimensional systems of nonlinear

equations (7L > 2), and hence may prove very useful when dealing

with antenna problems in multilayered media. Consider the case of

a complex transcendental equation of the form

F(z=z+jy)=o (3)

where z and y represent the real and imaginary parts of the complex

variable s. F( z) is transformed, through the use of the Jacobian

matrix, into a set of two nonlinear first-order ordinary differential

equations in terms of the real and imaginary parts of the complex

root, of the form [3]

dz

x=– — Re [F] Re [F,] + Im [F’] Im [Fz])
lF:\2 (

dy

a’+
— Re [F] Im [F,] -- Im [F] Re [F,])
IF:]Z (

(4)

where F, = 8F/8z is the partial derivative of F(z). Since the

solution to the ODE’s in (4) is a decaying time exponential, the

solution is reached when t is very large (t - co). This method

evaluates F(z) and F,(s) in each iteration. Therefore, it requires

that the complex function and its derivative be smooth in the interval

of interest except at some finite number of points (in the Cauchy-

sense). The advantage of Davidenko’s method is that it relaxes the

restriction on the choice of the initial guess for the complex root,

and it can be used when other methods like Newton–Raphson and

Muller fail to converge. It is important to remember that this method

can not be used if an analytical expression for the complex function

is not available.

II. EXAMPLE OF FINDING TM AND TE

SURFACE-WAVE MODES IN MICROSTRIP ANTENNAS

In microstnp antennas, we often have to obtain the complex TE

and TM surface-wave modes by finding the complex roots of the

transcendental characteristic equations ( i9TE and llTM ). The most

commonly used methods are those of Newton–Raphson and Mirller.

Here, we will attempt to obtain the roots with Davidenko’s method

and compare our results with the other two methods.

The characteristic equations for the normalized TM and TE surface

wave modes of the two-layer microstrip antenna shown in Fig. 1 are

given by [6]

Df~ = C,2u~ tanh (ulk~hl) + E,, UIUZ

. tanh (uzkohz) + e,lc,zu~ul + C?lV0U2

tanh (ulkcltl)tanh (u2kohz) = O (5)
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1. A double-layer microstrip antenna.

and

D(z) =uluz+u ouztanh(ulk~hl)TE

+ UOU1 tanh (uzkohz) + u; tanh (uIkohI)

. tanh (uzkohz) = O

where

ut./~, 2=z+jY=:
o

(6)

(7)

where C,t = e~%– j c,% is the complex dielectric constant of the ith-

dielectric layer and hi its thickness; J%Ois the free-space wavenumber

and kp the spectral p-component of the propagation constant. Mosig

[5] has shown that the roots of D$~ and D# exist only for

x c [1, max ~]. The expressions in (5) and (6) reduce to those

for an open microstnp antenna if layer 1 is assumed to be an air

dielectric (c,l = Crc = 1, hl - cm). Hence, for an open microstrip

the TM and TE characteristic equations become

(8)D$~ = c~,uo + U2 tanh (uzhz) = O

and

(9)D$~ = u. + u, coth (uzhz) = O.

For the open microstnp (single layer), Mosig [5] has shown that

n(l) has only one complex zero in the range 1 < x < 6 ifTM

k.hz ~~ < n/2 while D# has no zeros. First derivatives of

expressions (5), (6), (8) and (9) exist except at finite number of points

(branch point at k, = % and infinite derivative at /t@= kofi) and

hence the application of Davidenko’s method will be possible.

For numerical computations, consider an open microstrip antenna

of substrate thickness Icohz = 0.6384 and relative complex dielectric

permittivity E,z = 2 – j 0.01 (Teflon). Using a sketch of the

magnitude of D$~ in the complex plane z = z + jy (y < O)

it can be determined that the root lies in the region Re(z) c

[1, 1.1] for the given data. Table I shows the number of iterations

required by Davidenko’s method in comparison to the other methods.

The iterative process in Davidenko’s method is stopped when the

absolute difference between two successive iterations Iz~+l – ~k I ~

8(8 = 10–6 ). The root is found to be approximately at ZP =

(1,051756, –6.205234E - 4). Note that all the methods considered

converge to the exact root when the initial guess is nearly real,

Newton-Raphson (A) fails if the initial guess is picked far away from

the root location (in this case for Re (z) > 4.0). It is interesting

to note that Davidenko’s method (C) requires the same number of

iterations (N m 15) to converge to the root independently of the

initial guess assumed. On the other hand, in Muller’s method (B)

the number of iterations varies at random, and it can fail for some

initial guesses. Also, for some guesses, Davidenko’s method appears

to converge faster.

The roots of D$~ and 11~~ were also computed using Muller’s

and Davidenko’s methods. We have chosen GRAS (c,l = 12.5)

with a thickness of kohl = 0.1885 and Teflon (e,j = 2.1) with

a thickness of ko hz = 0.4398 as the superstrata and substrate

materials, respectively. Two surface-wave poles have been found for

TABLE I
NUMBER OF ITERATIONSNEEDED BY A) NEWTON –RAPHSON’s, B) MULLER’S

AND c) DAVIDENKO’ s METHODS TO FIND THE ROOTSOF D$~ IN (8)

Guess A B c

(1.1,0)

(2,-2)

(4,-4)

(6,-9)

(5,-7)

(10,1)

(3,-1)

(10,-8)

(3,-5)

(3,-4)

3

7

F8i18

Fails

Fails

Fails

7

Fails

10

9

7

10

Fails

18

25

23

12

16

12

Fails

11

14

14

15

15

15

14

15

14

14

this geometry, one for TM at z~M = 1.175291 and the other for TE

at .z~E = 1.033629. Both methods converged to the roots with the

selected initial guesses and no divergence was noted. Davidenko’s

method again requires a consistent number of iterations to converge

to the root. However, the number of iterations required by Muller’s

method varies greatly with the initial guess, and can be greater than

that required by Davidenko’s method.

III. EXAMPLE OF FINDING THE COMPLEX DIELECTRICCONSTANT

FROM REFLECTION COEFFICIENT MEASUREMENTS

The calculation of the complex relative dielectric permittivity from

reflection coefficient measurements of a dielectric material sample

embedded in a rectangular waveguide is well known and the theory is

fully established [7]. In this example, the sample is embedded at one

end of the guide (filling part of the guide) and backed by a matched

load termination. The other end of the guide is connected to an HP

851OB Network Analyzer as shown in Fig. 2. Assuming that only

the TE1o mode propagates, we use the theory of wave propagation in

multilayered media to determine the reflection coefficient at the input

of the guide (S1 I ). Following [7] we obtain the reflection coefficient

at the plane of the sample (plane TS ) as

r’s =
–j(Z~ – Z;) sin (~ItO)

22.21 cos (~~to) +j(Z~ + Z?) sin (~~tO)
(lo)

where Z; = up//3; is the TEIO characteristic impedance of medium

i (i = O in air, i = 1 in dielectric), ~i = ~~ its phase

constant and IG = ko @ its wavenumber, kc = rr/a is the cutoff

wavenumber of the guide with a being the guide widest dimension,

The measured SI ~ parameter (at plane T in Fig. 2) is related to I’s

by the phase shift relation

S1l = llseizp”(~o-to) (11)

where ZOis the guide length (10 = 5 inches for X-band waveguide),

The only unknown in (10) is the complex relative dielectric permit-

tivity which will be obtained by transforming (10) into a complex

transcendental equation of the form

~(~,) =2rSzc0s(plto) +j((l + rs)zz

- (1 - rs))sin(~lto) = O (12)

where z = /?1 //?o is a function of G-. The derivative of F(G) exists

and hence Davidenko’s method is applicable.

Numerical computations of the complex roots of (12) were per-

formed at an X-band frequency of 8.305 GHz for a 0.255- thick

Teflon sample. The measured S1 ~ parameter was 0.5693L 155.89°,

By plotting the magnitude of F’(c. ) versus the real and imaginary

parts of c. it can be determined that the function has a root whose

real part is in the proximity of 2. Table II shows the number of
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Fig. 2. HP 8510B automated network amalyzer set-up for the measurement
of the complex reflection coefficient of a dielectric sample embedded in a
matched rectangular waveguide.

TABLE II

NUMBER OF ITERATIONSNEEDED BY A) MOLLER’ s AND B)
DAVIDENKO’ s METHODS TO FrND THE COMPLEX DIELECTRIC

CONSTANTFROM REFLECTION COEFFICIENTMEASUREMENTSAND (12)

Guess A B

(3,-1)

(1,-3)

(4,-1)

(5,4)

(2,-1)

(5,-1)

(1,3)

(5,4)

(1,6)

(2.10)

7

11

7

9

7

a

Faila

9

Fails

13

16

16

15

16

15

16

17

17

16

la

iterations required by each method to converge to the root within a

specified tolerance ( 10–6 ). Only Muller’s and Davidenko’s methods

were compared. In this example, Muller’s method appears to converge

faster than Davidenko’s for some initial guesses but diverges for other

values. As in the previous example, the number of iterations required

by Davidenko’s method to converge is independent of the initial guess

chosen (N R 17). For the given measured data, both Muller’s and

Davidenko’s methods yield a complex relative dielectric permittivity

of C, R (2.080465, –0.051842).

IV. CONCLUSIONS

In this paper we explored the capabilities of Davidenko’s method

as a complex root-search routine. It shows to be as promising as

Muller’s method and hence could be used as an alternative if Muller’s

method is slowly convergent or if it fails to converge to the root.

The only apparent setback for Davidenko’s method is that it requires

the analytical expression of the first derivative (if it exists) of the

complex function.
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Mutual Coupling Between Two Small

Circular Apertures in a Conducting Screen

Sava V. Savov

Abstract-With the use of the reaction integral and two-dimensional

Fourier transform, an analytical expression for mutual coupting between

two small circular apertures in a conducting screen, excited by normally

incident plane electromagnetic wave, is obtained. Numerical examples
for two different polarizations of the plane wave are investigated. The
expression for the mutual admittance gives a correct value of the self
admittance of a small aperture when the distance between the holes is
equal to zero.

I. INTRODUCTION

The problem of computing the mutual coupling between two

equal apertures is a classical one. For the case of two narrow

parallel rectangular apertures excited by a plane electromagnetic

wave, it is dual of the problem of computing mutual coupling

between two electric dipoles, which was solved for the first time

by Cmter [1] and later more accurately by King [2]. The problem

of computing analytically the mutual coupling between two open

circular waveguides was solved by Bailey [3]. The problem of the

computing analytically the mutual coupling between two circular

apertures in a conducting screen, excited by a plane wave, is studied

in this paper.
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