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Short Papers

On The Use of Davidenko’s
Method in Complex Root Search

Hassan A. N. Hejase

Abstract—Davidenko’s method has proved to be a powerful technique
for solving a system of n-coupled nonlinear algebraic equations. It
employs a Newton’s method reduction to produce n-coupled first-order
differential equations in a dummy variable. The advantage it offers over
Newton’s method and other traditional methods such as Muller’s method
is that it relaxes the restrictions that the initial guess has to be very close
to the solution. Two examples involving the search for complex roots are
presented. Davidenko’s method seems to converge to the roots for all
the arbitrary initial guesses considered while Muller’s method appears
to fail for some cases. This suggests the use of Davidenko’s method as
an alternative to Muller’s method when the later fails to converge or is
slowly convergent.

I. SUMMARY OF COMPLEX ROOT SEARCH METHODS

In many electromagnetics problems, such as microstrip antennas
in multilayered dielectric structures, we often obtain complex tran-
scendental expressions whose complex poles or singularities have
to be found and extracted in order to accelerate the convergence of
the numerical algorithm used. Rootfinding methods such as New-
ton—Raphson and Muller's methods have been the most commonly
used by researchers. However, the success of these methods mainly
depends on the proper choice of initial guesses. In this paper we
will compare these methods to an alternative method, known as
Davidenko’s method., as applied to some typical electromagnetics
applications.

The Newton-Raphson method [1] is based on the idea of approx-
imating a complex function f(z) locally by a straight line (tangent
line). Let zx be an approximation of root z.. Then the equation of
the tangent line to f(z) at (z, fx) is given by

f(z)— fr=(z— 2 fi )

where fi is the derivative of f(z) at = = z;, and the z-intercept
is (zk+1,0) where
s = 2% — L2, @
k
In regions where f(z) has a small slope, Newton-Raphson method
can be erratic. Direct convergence to a root z, is guaranteed only if
the initial guess z, is sufficiently close to z.

Muller’s method [2] is widely used by electromagnetics researchers
in complex root search. It is better than Newton-Raphson method
in the sense that it interpolates f(z) in the vicinity of a root by
a quadratic curve (parabola). Since it takes 3 points to uniquely
define a parabola, we assume 3 approximate values for the root
Zr.Zk—2+ Zk—1, and zp along with their respective function values
Ffr—2. fe—1. and fi. Therefore, given 3 initial guesses z., 21, 22, the
method generates a sequence 2., »1. 22, 23.-+ of approximations.
At each stage. the new approximation is derived from the 3 most
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recent ones by quadratic interpolation. Although the method is rather
complicated, no evaluations of derivatives of f(z) and only one
evaluation of f(z) is required per iteration. Convergence is essentially
global for almost all practical problems with almost any set of initial
gUeSSeS Zo, 21, £2.

An alternative method that is competitive to Muller’s method is
Davidenko’s method. This method has been successfully applied
in Chemical engineering problems [3]. It has also found use in
Electromagnetics, where it was used in solving the dispersion re-
lations of electromagnetic waves propagating in lossy waveguide
structures [4]. Davidenko’s method is a Newton-based method which
is advantageous in the case of n-dimensional systems of nonlinear
equations (n > 2), and hence may prove very useful when dealing
with antenna problems in multilayered media. Consider the case of
a complex transcendental equation of the form

Flz=24+jy)=0 G

where z and y represent the real and imaginary parts of the complex
variable z. F(z) is transformed, through the use of the Jacobian
matrix, into a set of two nonlinear first-order ordinary differential
equations in terms of the real and imaginary parts of the complex
root, of the form [3]

dz 1

2 = ~(rp (ReIFIRe(F] + Im [F]Im [F2))

dy 1

2 +|F—Z|2—(Re [F]Im [F:] - Im [F] Re [F.]) “@

where F, = OF/8z is the partial derivative of F(z). Since the
solution to the ODE’s in (4) is a decaying time exponential, the
solution is reached when t is very large (¢ — oo). This method
evaluates F'(z) and F.(:) in each iteration. Therefore, it requires
that the complex function and its derivative be smooth in the interval
of interest except at some finite number of points (in the Cauchy-
sense). The advantage of Davidenko’s method is that it relaxes the
restriction on the choice of the initial guess for the complex root,
and it can be used when other methods like Newton—Raphson and
Muller fail to converge. It is important to remember that this method
can not be used if an analytical expression for the complex function
is not available.

II. EXAMPLE OF FINDING TM AND TE
SURFACE-WAVE MODES IN MICROSTRIP ANTENNAS

In microstrip antennas, we often have to obtain the complex TE
and TM surface-wave modes by finding the complex roots of the
transcendental characteristic equations (D7 and Drtm). The most
commonly used methods are those of Newton—Raphson and Muller.
Here, we will attempt to obtain the roots with Davidenko’s method
and compare our results with the other two methods.

The characteristic equations for the normalized TM and TE susface
wave modes of the two-layer microstrip antenna shown in Fig. I are
given by [6]

D) = €0l tanh (urkoh) + €, urua

2
-tanh (ugkoha) + €rp€ryUotin + €ry Uolla

-tanh (uikohi) tanh (ugkohs) =0 5)
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Ground Plane

Fig. 1. A double-layer microstrip antenna.
and
D,(rz}% =ujuz + uousz tanh (uikoh)
+ uour tanh (uakoha) + u% tanh (u1koh1)
- tanh (uskoha) = 0 (6)
where

U = 2% — €, z:x-{-jy:% @)

where €, = €. — jer, is the complex dielectric constant of the th-
dielectric layer and h; its thickness; &, is the free-space wavenumber
and %, the spectral p-component of the propagation constant. Mosig
[5] has shown that the roots of D%\)A and D%% exist only for
2z € [1,max NGS ]. The expressions in (5) and (6) reduce to those
for an open microstrip antenna if layer 1 is assumed to be an air
dielectric (¢, = ¢, = 1, h1 — 00). Hence, for an open microstrip
the TM and TE characteristic equations become

Dr(rll\)/I = €r,Uo + ug tanh (ughy) =0 ®)
and
D'(I‘lé = U, + Uz coth (Uzhg) =0. 9)

For the open microstrip (single layer), Mosig [5] has shown that
D%\)A has only one complex zero in the range 1 < z < /&, if
koho/ery =1 < 7/2 while D%} has no zeros. First derivatives of
expressions (5), (6), (8) and (9) exist except at finite number of points
(branch point at k, = k, and infinite derivative at k, = ko./¢r;) and
hence the application of Davidenko’s method will be possible.

For numerical computations, consider an open microstrip antenna
of substrate thickness k,h2 = 0.6384 and relative complex dielectric
permittivity e, = 2 — j 0.01 (Teflon). Using a sketch of the
magnitude of D%\),I in the complex plane z = z + jy(y < 0)
it can be determined that the root lies in the region Re(z) €
[1,1.1] for the given data. Table I shows the number of iterations
required by Davidenko’s method in comparison to the other methods.
The iterative process in Davidenko’s method is stopped when the
absolute difference between two successive iterations |zp41 — 2zx| <
6(6 = 107°). The root is found to be approximately at z, =
(1.051756, —6.205234F — 4). Note that all the methods considered
converge to the exact root when the initial guess is nearly real.
Newton—Raphson (A) fails if the initial guess is picked far away from
the root location (in this case for Re (z) > 4.0). It is interesting
to note that Davidenko’s method (C) requires the same number of
iterations (N =~ 13) to converge to the root independently of the
initial guess assumed. On the other hand, in Muller’s method (B)
the number of iterations varies at random, and it can fail for some
initial guesses. Also, for some guesses, Davidenko’s method appears
to converge faster.

The roots of D(TZI\),I and D(TZE)J were also computed using Muller’s
and Davidenko’s methods. We have chosen GaAs (¢, = 12.5)
with a thickness of k,hy = 0.1885 and Teflon (e, = 2.1) with
a thickness of k,he = 0.4398 as the superstrate and substrate
materials, respectively. Two surface-wave poles have been found for

TABLE 1
NUMBER OF ITERATIONS NEEDED BY A) NEWTON -~RAPHSON’ S, B) MULLER’S
AND C) DAVIDENKO’ $ METHODS TO FIND THE ROOTS OF DTlM N (8)

Guess A B [
(1.1,0) 3 7 1
(2,-2) 7 10 14
4,-4) Fails Fails 14
(6,-9) Fails . 16 15
6,7 Fails 25 15
(10,1) Fails 23 15
3,-1) 7 12 14
(10,-8) Fails 16 15
(3,-5) 10 12 14
(3,-4) 9 Fails 13

this geometry, one for TM at z, ' = 1.175291 and the other for TE
at zg E — 1.033629. Both methods converged to the roots with the
selected initial guesses and no divergence was noted. Davidenko’s
method again requires a consistent number of iterations to converge
to the root. However, the number of iterations required by Muller’s
method varies greatly with the initial guess, and can be greater than
that required by Davidenko’s method.

Hi. ExaMPLE OF FINDING THE COMPLEX DIELECTRICCONSTANT
FrROM REFLECTION COEFFICIENT MEASUREMENTS

The calculation of the complex relative dielectric permittivity from
reflection coefficient measurements of a dielectric material sample
embedded in a rectangular waveguide is well known and the theory is
fully established [7]. In this example, the sample is embedded at one
end of the guide (filling part of the guide) and backed by a matched
load termination. The other end of the guide is connected to an HP
8510B Network Analyzer as shown in Fig. 2. Assuming that only
the TE10 mode propagates, we use the theory of wave propagation in
multilayered media to determine the reflection coefficient at the input
of the guide (S11). Following [7] we obtain the reflection coefficient
at the plane of the sample (plane T's) as

_ —j(Z5 — Z¢) sin (B1t,)
T 97,71 cos (Bito) + j(Z2 + Z2) sin (B1ts)

where Z; = wy/B; is the TE;o characteristic impedance of medium
i(d = 0 in air, 4 = 1 in dielectric), #; = /k? — k2 its phase
constant and k; = ko./€,; its wavenumber. k. = 7 /0 is the cutoff
wavenumber of the guide with o being the guide widest dimension.
The measured 511 parameter (at plane 7' in Fig. 2) is related to I's
by the phase shift relation

Sll — Fsejzﬁo(lo—to)

I's

(10)

11

where 1, is the guide length (I, = 5 inches for X -band waveguide).
The only unknown in (10) is the complex relative dielectric permit-
tivity which will be obtained by transforming (10) into a complex
transcendental equation of the form

F(er) =205z cos (B1t,) + (1 + [s)z>
— (1= Ts))sin (8it,) = 0

where 2z = f31/0, is a function of e,. The derivative of F(e,) exists
and hence Davidenko’s method is applicable.

Numerical computations of the complex roots of (12) were per-
formed at an X-band frequency of 8.305 GHz for a 0.255- thick
Tefion sample. The measured S;; parameter was 0.5693/£155.89°,
By plotting the magnitude of F(e,) versus the real and imaginary
parts of €. it can be determined that the function has a root whose
real part is in the proximity of 2. Table II shows the number of

(12)
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Fig. 2. HP 8510B automated network analyzer set-up for the measurement
of the complex reflection coefficient of a dielectric sample embedded in a
matched rectangular waveguide.

TABLE 1I
NUMBER OF ITERATIONS NEEDED BY A) MULLER’ § AND B)
DAVIDENKO’ s METHODS TO0 FIND THE COMPLEX DIELECTRIC
CONSTANT FROM REFLECTION COEFFICIENT MEASUREMENTS AND (12)

Guess A B
(3,-1) 7 15
(1,-3) 1 16
4,-1) 7 15
5,-9) 9 16
@2,-1) 7 15
5,-1) 8 16
1,3) Fails 17
(5,4) 9 17
(1,6) Fails 18
(2,10) 13 18

iterations required by each method to converge to the root within a
specified tolerance (10™%). Only Muller’s and Davidenko’s methods
were compared. In this example, Muller’s method appears to converge
faster than Davidenko’s for some initial guesses but diverges for other
values. As in the previous example, the number of iterations required
by Davidenko’s method to converge is independent of the initial guess
chosen (N ~ 17). For the given measured data, both Muller’s and
Davidenko’s methods yield a complex relative dielectric permittivity
of e, ~ (2.080465, —0.051842).

IV. CONCLUSIONS

In this paper we explored the capabilities of Davidenko’s method
as a complex root-search routine. It shows to be as promising as
Muller’s method and hence could be used as an alternative if Muller’s

method is slowly convergent or if it fails to converge to the root.
The only apparent setback for Davidenko’s method is that it requires
the analytical expression of the first derivative (if it exists) of the
complex function.
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Mutual Coupling Between Two Small
Circular Apertures in a Conducting Screen

Sava V. Savov

Abstract—With the use of the reaction integral and two-dimensional
Fourier transform, an analytical expression for mutual coupling between
two small circular apertures in a conducting screen, excited by normally
incident plane electromagnetic wave, is obtained. Numerical examples
for two different polarizations of the plane wave are investigated. The
expression for the mutnal admittance gives a correct value of the self
admittance of a small aperture when the distance between the holes is
equal to zero.

I. INTRODUCTION

The problem of computing the mutual coupling between two
equal apertures is a classical one. For the case of two narrow
parallel rectangular apertures excited by a plane electromagnetic
wave, it is dual of the problem of computing mutual coupling
between two electric dipoles, which was solved for the first time
by Carter [1] and later more accurately by King [2]. The problem
of computing analytically the mutual coupling between two open
circular waveguides was solved by Bailey [3]. The problem of the
computing analytically the mutual coupling between two circular
apertures in a conducting screen, excited by a plane wave, is studied
in this paper.
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